白山火山噴出物の汚濁帯を有する斜長石斑晶と 汚濁帯を有しない斜長石斑晶の化学組成の比較

東野外志男 石川県白山自然保護センター

COMPARISON OF CHEMISTRY BETWEEN DUSTY AND CLEAR PLAGIOCLASE PHENOCRYSTS IN HAKUSAN VOLCANIC ROCKS.

Toshio HIGASHINO, Hakusan Nature Conservation Center, Ishikawa

はじめに

斜長石はほとんどの火山岩に存在する代表的な斑 晶鉱物で、斜長石斑晶の組織や累帯構造・化学組成 などは、その岩石の成因について重要な情報を提供 する(e.g. Vance, 1965; Nixon and Pearce, 1987; Pearce and Kolisnik, 1990; Kawamoto, 1992な ど)。日本列島に産するカルクアルカリ系列の安山岩 では、中心部の組成がCaに富む斜長石斑晶とCa に乏しい斜長石斑晶が同じ試料中に共存することが しばしばあり、それらは異なったマグマ中で成長し たもので、マグマ混合を示す1つの証拠とされてい る(Sakuyama, 1981; Koyaguchi, 1986; 中 村, 1991;太田・青木, 1991など)。

白山火山の噴出物はカルクアルカリ系列に属する 安山岩で、鉱物組み合わせや造岩鉱物の累帯構造な どからマグマ混合が示唆されている(黒田、1967; 東野、1990)。斜長石はこれら安山岩の主要な造岩鉱 物で、斜長石斑晶には汚濁帯を有するものと有しな いものがある。また、汚濁帯を有しない斜長石斑晶 に Ca に富むへりが形成されているものとそうでな いものがある(東野、1990)。今回、予察的であるが、 これら対照的な特徴を有する斜長石斑晶の化学組成 を比較するため分析を行ったので、その結果を報告 する。

反射電子像の観察と化学分析には、金沢大学理学 部地学教室のエネルギー分散型X線分析装置 (Philips EDAX9100)付属の走査電子顕微鏡 AKASHI ALPHA - 30Aを使用した。装置の使用 の御便宜を計っていただいた石渡 明博士に感謝す る。測定試料は、金沢大学理学部地学教室に保管さ れているものと著者が採集したものである。金沢大 学に保管されている試料は、長岡正利氏と岩田次男 氏の採集によるものである。

岩石記載

白山火山は形成時代と活動中心が異なる3つの火 山体,加賀室火山・古白山火山・新白山火山に大別 され、形成年代はこの順に若くなる(長岡ほか, 1985)。他に新白山火山とほぼ同時期に形成されたう ぐいす平火山が存在するが、他の火山体に比較して 著しく小規模である。加賀室火山と古白山火山の K-Ar年代は、それぞれ0.32~0.43 Maと0.10~ 0.14 Maで(東野ほか,1984;清水ほか,1988),新 白山火山は歴史時代の活動記録を有する。白山火山 の噴出物はカルクアルカリ系列に属し、SiO2量は56 ~67 wt.%で、多くは58~63 wt.%の範囲にはいる (長岡ほか,1990)。ハーカー図(Harker diagram)

試 料 番 号	火山体名	採集場所	岩 石 名	SiO₂(wt.%)
MN27 (MN70082401)	古白山火山	小白水谷支谷 (36°11′40″N、136°44′29″E)	黒雲母含有紫蘇輝石-ホルンブレンド安山岩	59.2
TI14 (TI79081505)	加賀室火山	丸石谷中流左岸 (36°12′04″N、136°43′54″E)	ホルンブレンドー紫蘇輝石安山岩	61.5
TH82101702	加賀室火山	ハライ谷上流 (36°13′54″N、136°43′49″E)	石英-カンラン石含有ホルンブレンド-紫蘇 輝石安山岩	60.5

表1 斜長石斑晶を分析した試料の概要

SiO₂量は長岡(1990)による。

において、加賀室火山の Na₂O と K₂O 量が古白山 火山や新白山火山よりわずかに低いこと以外は、主 要化学組成は加賀室火山・古白山火山・新白山火山 の間で明瞭な差はない(長岡ほか、1990)。

白山火山の噴出物は一般に斑状組織を呈する。斑 晶量はおよそ10~30vol.%で(長岡ほか,1990),斜 長石・紫蘇輝石・角閃石・鉄チタン鉱物を斑晶とし て常に含む。他にカンラン石や石英が斑晶として産 することがある。まれであるが,黒雲母の斑晶を含 むこともある。石基はほぼ完晶質で,ガラスは少な い。斜長石と斜方輝石・普通輝石・鉄チタン鉱物が 常に存在する石基鉱物である。まれに,黒雲母が石 基鉱物として産することがある。

有色鉱物の量はおよそ2~8 vol.%で,多くは紫 蘇輝石と角閃石である(長岡ほか,1990)。紫蘇輝石 の斑晶は通常自形~半自形を呈する。Mgに富むへ りを有するものとそうでないものがあり,単斜輝石 がへりに形成されていることもある。斜方輝石の化 学組成は,Mgに富むへりや単斜輝石のへりの有無 にかかわらず内部ではほとんど差がない(東野, 1994)。角閃石の斑晶は自形~半自形を呈する。ほと んどオパサイト化していることが多く、オパサイト を構成するものは鉄チタン鉱物・斜方輝石・斜長石 ・黒雲母などである。カンラン石斑晶は通常斑晶の 中央部がほぼ均質で、周辺部でMgが徐々に減少 する正累帯構造を示し、斜方輝石の反応縁を通常有 する。黒雲母斑晶は暗褐色で、周辺部はオパサイト 化している。石英の斑晶は単斜輝石の反応縁をもつ ものとそうでないものがある。

斜長石斑晶のモードはおよそ20~25vol.%で,斑 晶鉱物のおよそ70~90%を占める(長岡ほか,1990)。 斜長石の斑晶は自形~半自形を呈し,大きさは多く は1~2mm 程度で,大きなもので長径が4mm を こえるものもある。石基の斜長石は多くが矩形の自

表2 汚濁	帯や Ca	に富むへり	を除い	た部分の斜長石斑晶の代表的分析値
-------	-------	-------	-----	------------------

6 - 6 - 6 - 6		3 50 50 58 9	S	2997 No. 197 A. 1987	15 0.00 PC			
試料番号				MN27				
結晶の種類	PI-2*	PI-2*	PI-2*	PI-9	PI-9	PI-9	PI-17	PI-17
分析点	1	2	3	1	2	3	2	4
SiO2	56.51	56.53	47.31	55.85	55.16	52.31	57.04	55.32
AI203	28.03	27.28	34.01	27.77	27.95	29.55	27.18	27.59
CaO	9.36	9.02	16.30	9.32	9.47	11.75	8.69	9.78
Na2O	6.56	6.92	1.89	7.02	6.59	5.00	6.82	5.78
К2О	0.45	0.39	0.00	0.41	0.38	0.18	0.42	0.29
Total	100.91	100.14	99.51	100.37	99.55	98.79	100.15	98.76
An	43.0	41.0	82.7	41.4	43.3	55.9	40.4	47.5
Ab	54.5	56.9	17.3	56.4	54.6	43.1	57.3	50.8
Or	2.5	2.1	0.0	2.2	2.1	1.0	2.3	1.7

試料番号	TI14				TI14 TH82101702			
結晶の種類	PI-1*	PI-1*	PI-5	PI-5	PI-2	PI-2	PI-2	PI-5*
分析点	3	6	1	2	1	3	4	1
SiO2	55.90	57.04	56.62	48.25	51.64	54.86	57.88	55.83
AI203	27.89	27.22	26.97	33.46	30.94	28.57	26.26	27.21
CaO	9.67	8.79	8.79	15.79	13.62	10.78	8.45	9.14
Na2O	6.16	6.69	6.55	1.88	2.84	4.72	5.85	6.20
K20	0.31	0.62	0.37	0.00	0.24	0.34	0.56	0.49
Total	99.93	100.36	99.30	99.38	99.28	99.27	99.00	98.87
An	45.6	40.6	41.7	82.2	71.5	54.7	42.9	43.6
Ab	52.6	56.0	56.2	17.8	27.0	43.3	53.7	53.6
Or	1.7	3.4	2.1	0.0	1.5	2.0	3.4	2.8

*は汚濁帯を有するもの.

形をなす。

今回斜長石斑晶の累帯構造と化学組成を検討した のは、古白山火山と加賀室火山の溶岩流から採集さ れた3個の試料で、それぞれの試料の概要は表1の とおりである。

斜長石斑晶の累帯構造

白山火山の溶岩中の斜長石斑晶は,塵状の細粒物 質を包有することがある。塵状の細粒物質は,通常 斑晶の周辺部に結晶の内部を取り囲むように帯をな して発達する。ここではそのような塵状の細粒物質 が帯状をなしたものを汚濁帯(dusty zone)とよぶ。 この汚濁帯の有無により,斜長石斑晶をそれを有す るもの(dusty plagioclase)と有しないもの(clear plagioclase)とに大別する。塵状の物質は他に狭い 範囲に局所的に発達したり,割れ目にそって形成さ れることもある。

図版 I に示したものが汚濁帯を有する斜長石斑晶 の代表的なものである。汚濁帯は斑晶の周辺部に結 晶の内部を取り囲むように連続的に発達するが,一 部欠けることも多い(図版 I-c・d・e)。汚濁帯の内 側の輪郭は多くは凹凸をなし,汚濁帯が結晶の内部 に向かって滲みいるように発達したことを示す。汚 濁帯がその内側の部分の累帯構造を切る(truncate) ように発達するのが明瞭に観察されることがある

(図版 I-c;東野,1990)。斑晶によっては,塵状の 物質が周辺の汚濁帯から割れ目に沿って結晶の内部 にむかい浸透したように形成されているものもある (図版 I-a)。汚濁帯の外側の輪郭は結晶の外形にほ ぼ平行であるが,特に結晶面が交わる綾(edge)の部 分において,ほぼ自形の結晶面(外形)と対照的に, 円みを帯びているのが観察できる(図版 I-b・c・e)。 汚濁帯の外側には,比較的厚い幅の清澄なへりが通 常発達する(図版 I)。結晶によっては,一部の結晶 面に清澄なへりがみられないものもある(図版 I-c ・d)。図版 I の反射電子像でみられるように,汚濁 帯とその外側の清澄なへりの部分は,汚濁帯より内 側で汚濁帯に近い部分に比べて明瞭に Ca 成分に富 み,その変化は顕著である。

汚濁帯を有しない斜長石斑晶には、汚濁帯を有す る斜長石斑晶のように Ca に富む清澄なへりを有す るもの(図版 II - a・c・d)と有しないもの(図版 II - e・f)とがある。Ca に富むへりを有する場合、へ りとその内側との組成変化は一般に顕著である。Ca に富むへりは厚いもので50µm を越えるものもある (図版 II - a)が、薄いものが多い。Ca に富むへり と内側の部分との境界が比較的よく観察できるもの (図版 II - a・b・c)では、結晶の外形が自形を呈す る部分でも、その境界が、特に綾の部分で円くなっ ている。

汚濁帯や Ca に富むへりを除いた部分の斜長石斑 晶の累帯構造は、汚濁帯や Ca に富むへりの有無に かかわらず、通常波動累帯構造(oscillatory zoning) を呈する。その変化が微弱なもの(図版 I-b・e,図 版 II - e)と、部分的に周辺に比べて著しく Ca に富 むところが存在するものがある(図版 II - a・c・d ・f)。図版 II - d・f に示すように、Ca に富む部分 に包有物が集まっていることがある。また、Ca に 富む帯が途中とぎれていることが、観察できるもの がある(図版 II - f)。

斜長石斑晶の化学組成

汚濁帯と Ca に富むへりを除いた部分について化 学分析を行った。1個の結晶について任意に数点選 んだ。その際,反射電子像で他にくらべ著しく Ca 成分に富む部分が存在する場合は,できる限りその 部分も分析するよう心がけた。いずれの試料も幅広 い組成幅を有するが,汚濁帯の有無による組成上の 違いは特に認められない(図1)。また,汚濁帯を有 しない斑晶でも,Ca に富むへりの有無による違い も特に認められなかった。これら斜長石斑晶の多く はMN27でAn₃₄~An₅₀,TI14でAn₃₆~An₄₈,TH 821017でAn₃₆~An₄₈の組成を有し、Or成分はおよそ 1.5~2.5mol%程度である。汚濁帯とCaに富むへり を除いた結晶内部の大部分がこの領域にはいると考 えられる。また,この組成幅は,試料間に特に大き な差がない。

周辺に比べて特に Ca 成分に富む部分は,通常, An が60mol%を越えることが多く(図版 II - c・f), まれに An₈₀を越えるような著しく Ca に富む部分も 存在する(図版 II - a)。しかしながら,結晶の大部 分が An₆₀をこえるような Ca に富む斜長石斑晶は, 今回確認できなかった。汚濁帯を有する斑晶の Ca に富むへりで,外側に向かって An 成分が減少する 正累帯構造が反射電子像で観察できる(図版 I-f)。

議論 斜長石斑晶の主要部分の形成

汚濁帯やCaに富むへりを除いた斜長石斑晶の主 要部分は、汚濁帯やCaに富むへりの有無による累 帯構造や化学組成の違いは特に認められない(図 1)。結晶によっては、時折 An₆₀を越す Caに富む 部分が存在するが、それらは部分的で、その存在は 汚濁帯やCaに富むへりの有無に関係ない。汚濁帯 やCaに富むへりを除いた部分は、汚濁帯やCaに 富むへりの有無に関係なく、大部分がおおむねAn₃₄ - An₅₀の組成範囲に入る。このことは、汚濁帯やCa に富むへりを除いた斜長石斑晶の主要部分は、汚濁 帯やCaに富むへりの有無に関係なく、同じマグマ

Anorthite mol %

図1 汚濁帯を有する斜長石斑晶(dusty plagiociass)と汚濁帯を有しない斜長石斑晶(clear plagioclass)の化学組成の比較 汚濁帯とCa に富むへりを除いた部分の分析値。分析した斑晶の数は、MN27では汚濁帯を有するものが7個、汚濁帯を有しな いものが18個、TI14では汚濁帯を有するものが7個、汚濁帯を有しないものが6個、TH82101702では汚濁帯を有するものが4 個、有しないものが5個である。

溜りで成長したことを示すものと考えられる。Ca に著しく富む部分は、同じマグマ溜り中の成長で も、成長の途中段階でそれまでとは異なる物理条件 や化学的環境にもたらされたことを示唆するのかも しれない(e.g. Anderson, 1984など)。Caの増加が 融食の組織と対応することがあり(図版 II - f)、そ の増加の原因の可能性の1つとして、塩基性マグマ の混合や温度上昇が考えられる(e.g. Nixon and Pearce, 1987; Singer et al., 1993)が、明らか でない。

斜長石斑晶の汚濁帯の形成

汚濁帯は造山帯の安山岩中の斜長石斑晶にしばし ば見られるものである。酸性マグマ中で成長した比 較的 Ab 成分に富む斜長石の結晶が、マグマ混合に より塩基性マグマと反応することによって、汚濁帯 が形成されたと一般に考えられている(e.g. Eichelberg, 1978 ; Sakuyama, 1978 ; Bloomfield and Arculus, 1989など)。Tsuchiyama (1985) は, Di-Ab-An 系における斜長石結晶とメルト(ガラ ス)の反応を実験し、メルトの組成が斜長石結晶と 平衡のメルトの組成よりも Ca に富んでいるとき、 実験温度にかかわらず斜長石結晶の周辺部に汚濁帯 がしばしば形成されることを示した。その場合、温 度がメルトの斜長石リキダス温度(plagioclase liquidus temperature)より高い時,斜長石結晶は溶 解し、一方、温度がそのリキダス温度より低い時、 斜長石結晶はほぼ元の形を保つ。

白山火山溶岩の斜長石斑晶の汚濁帯は内側の部分 の累帯構造の一部を切ると共に、その外形は、特に 綾(edge)の部分で、一般に円くなっている。また、 汚濁帯の組成は、それに近傍の内側の部分より著し く Ca 成分に富む。このような組織と化学的特徴 は、汚濁帯が、既存の斜長石斑晶の融食の後(もし くはほぼ同時)に Ca成分に富むメルトと反応する ことによって形成されたことを示す。斑晶の内部で も割れ目に沿って塵状の物質が形成されやすいの は、その場所にメルトが侵入しやすいためと考えら れる。Tsuchiyama (1982) の実験をもとにすると、 このような汚濁帯の形成には、それまで存在したメ ルトのリキダス温度より高い温度と、斜長石斑晶と 平衡と考えられる組成よりも Ca 成分に富んだメル トの関与が必要である。Ca成分に富むメルトの候 補として、外部から混合した塩基性マグマ(e.g. Eichelberger, 1978; Sakuyama, 1978など)と、

温度上昇によって斜長石斑晶が融解してできたメル トと既存のマグマとが混合することによって形成さ れたもの(Kawamoto, 1992) との2つの可能性が 考えられる。汚濁帯を有しない斜長石斑晶のなかで も比較的幅の広い Ca に富むへりを有するものも, 結晶の内部との境界は一般に円くなっている。Ca に富むへりの形成前に融食作用を受けたことを示 し、温度上昇がその主な原因と考えられる。

Caに富むへりは、汚濁帯を有する斜長石斑晶で 正累帯構造が確認されるので、比較的安定した外部 条件下のもと、温度低下に伴って成長したと考えら れる。

マグマ混合

造山帯におけるカルクアルカリ系列の安山岩マグ マの形成に、酸性マグマと塩基性マグマの混合が重 要な役割を果たすといわれる (e.g. Eichelberger, 1978; Sakuyama, 1981・1984など)。白山火山の安 山岩溶岩については、斜方輝石と斜長石の斑晶の多 くが逆累帯構造を示すこと、岩石によってはカンラ ン石斑晶と石英斑晶の共存がみられること、カンラ ン石斑晶が正累帯構造を示し、へりに斜方輝石の反 応縁が存在することから、マグマ混合が示唆されて いる (黒田, 1967; 東野, 1990)。

今回検討した斜長石斑晶には、マグマ混合の影響 を強く受けたものとほとんど受けてないものがあ り、それらは1個の岩石中に共存する。最も影響を 強く受けたものは汚濁帯を有する斜長石斑晶で、最 もその影響が少ないのが汚濁帯もCaに富む外殻も 有しない斜長石斑晶である。その中間が、Caに富 む外殻を有するが汚濁帯の存在しない斜長石斑晶で ある。

カンラン石・斜方輝石・斜長石・石英の斑晶にか ぎっていえば、混合以前の塩基性マグマはカンラン 石斑晶を有するものと有しないものがある。一方、 酸性マグマには斜方輝石と斜長石斑晶を常に含み、 石英斑晶は含む場合とそうでない場合がある(東野、 1990)。酸性マグマ中で成長したと考えられる斜長 石斑晶の化学組成は、検討された試料数は少ない が、火山体や同じ火山体でも試料によって大きな差 がない(図1)。斜方輝石斑晶についても、斜長石斑 晶と同様に、火山体により化学組成上大きな差がな い(東野,1994)。これらのことは、酸性マグマの化 学組成が加賀室火山が形成された時期の30~40万年 前から新白山火山が形成された時期(およそ数万年 前)まで,大きく変わっていないことを示す可能性 がある。

摘要

白山火山の溶岩中の斜長石斑晶には,汚濁帯を有 するものと有しないものがある。汚濁帯を有する斜 長石斑晶には,その外側に清澄なCaに富むへりが 発達する。汚濁帯とCaに富むへりは,汚濁帯のす ぐ内側の部分に比べてCaに富む。汚濁帯をもたな い斜長石斑晶には,Caに富むへりが存在する場合 とそうでない場合がある。

汚濁帯やCaに富むへりを除いた斜長石斑晶の主 要部分は、汚濁帯やCaに富むへりの有無にかかわ らず、波動累帯構造を示し、よく似た化学組成をも つ。これは、同じマグマ溜りで成長したことを示す と考えられる。斜長石斑晶には、マグマ混合の影響 を強く受けたもの(汚濁帯を有するもの)からほと んど受けてないもの(汚濁帯もCaに富むへりも存 在しない)が一個の岩石中に共存する。

斜長石斑晶や斜方輝石斑晶の内部の化学組成が, 形成時期の異なる火山体の間でも大きな差がないの は、白山地域において、酸性マグマを形成する条件 がここ30~40万年は大きく変わっていないことを示 す可能性がある。

文 献

- Anderson, A.T. (1984) Probable relations between plagioclase zoning and magma dynamics, Fuego Volcano, Guatemala. Amer. Mineral., 69, 660 - 676.
- Bloomfield A. L. and Arculus, R. J. (1989) Mamga mixing in the San Francisco volcanic field, AZ: Petrogenesis of the O'Leary peak and Strawberry crater volcanics. Contrib. Mineral. Petrol., 102, 429 - 453.
- Eichelberger, J.C. (1978) Andesitic volcanism and crustal evolution. Nature, 275, 21 27.
- 東野外志男(1990) 反射電子像でみられる白山火山噴出物の カンラン石・紫蘇輝石・斜長石斑晶の累帯構造. 石川県 白山自然保護センター研究報告,第17集,13-21.
- 東野外志男(1994) 白山火山噴出物の斜方輝石の化学組成. 石川県白山自然保護センター研究報告,第21集,1-6.
- 東野外志男・長尾敬介・板谷章吉・山崎正男 (1985) 白山火山及び大日ケ岳火山のK-Ar年代, 石川県 白山自然保護センター研究報告, 第10集, 23-29.
- Kawamoto, T. (1992) Dusty and honeycomb plagioclase : indicators of processes in the Uchino strafified magma

chamber, Izu Peninsula, Japan. Jour. Volcanol. Geotherm. Res., **49**, 191 - 208.

- 黒田 直(1967) 白山火山の岩石について。 名古屋地学, No. 23, 2-15.
- Koyaguchi, T. (1986) Textural and compositional evidence for magma mixing and its mechanism, Abu volcano group, southwestern Japan. Contrib. Mineral. Petrol., 93, 33 - 45.
- 長岡正利・東野外志男・岩田次男(1990)白山火山の全岩組 成. 石川県白山自然保護センター研究報告,第17集,1 -11.
- 長岡正利・清水智・山崎正男(1985)白山火山の地質と形成 史. 石川県白山自然保護センター研究報告,第12集,9 -24.
- 中村美千彦(1991)北八ケ岳火山新期の岩石学的モデル. 火山, 36, 93-112.
- Nixon, G.T. and Pearce, T.H. (1987) Laser-interferometry study of oscillatory zoning in plagioclase: The record of magma mixing and phenocryst recycling in calcalkaline magma chambers, Iztaccihuatl volcano, Mexico. Amer. Mineral., 72, 1144 - 1162.
- 太田岳洋・青木謙一郎(1991) 由布・鶴見火山群における安 山岩マグマの成因. 火山, 86, 1-15.
- Pearce, T.H. and Kolisnik, A.M. (1990) Observation of plagioclase zoning using interference imaging. Earth Sci. Rev., 29, 9 - 26.
- Sakuyama, M. (1978) Petrographic evidence of magma mixing in Shirouma-Oike volcano, Japan. Bull. Volcanol., 414, 501 - 512.
- Sakuyama, M. (1981) Petrological study of the Myoko and Kurohime volcanoes, Japan: crystallization sequence and evidence for magma mixing. Jour. Petrol., 22, 553 - 582.
- Sakuyama, M. (1984) Magma mixing and magma plumbing systems in island arcs. Bull. Volcanol., 47, 685 703.
- 清水 智・山崎正男・板谷徹丸(1988)両白 飛騨地域に分布する鮮新 更新世火山岩の K-Ar 年代. 岡山理科大学 赤山研究所研究報告, No. 14, 1 - 36.
- Singer, B.S., Pearce, T.H., Kolisnik, A.M.and Myers, J.D. (1993) Plagioclase zoning in mid-Pleistocene lavas from the Seguam volcanic center, central Aleutian arc, Alaska. Amer. Mineral., 78, 143 - 157.
- Tsuchiyama, A. (1985) Dissolution kinetics of plagioclase in the melt of the system diopside-albite-anorthite, and

origin of dusty plagioclase in and esites. Contrib. Mineral. Petrol. , $89,\ 1$ - 16

Vance, J.A. (1965) Zoning in igneous plagioclase : Patchy zoning. Jour. Geol., 73, 636 - 651.

図版 I の説明

- a 汚濁帯を有する斜長石斑晶の顕微鏡写真(TH 82101702, Pl-5)。汚濁帯が斜長石斑晶の周辺 部に顕著に発達。汚濁帯の厚さはおよそ200~ 300µm。汚濁帯より内側の部分にも、割れ目に 沿って塵状の物質が形成されている。
- b 同上斜長石斑晶の反射電子像(TH82101702, Pl -5)。反射電子像の強度は平均原子番号に比例 し、平均原子番号の大きなところは相対的に明 るくなる。相対的に原子量に大きな差のある元 素の置換が著しいところで、コントラストのあ る像が得られる(東野, 1990)。斜長石の主な置 換は NaSi ⇒ CaAl なので、反射電子像の強度 の差を主に An(Anorthite)量の違いとすること ができる。An 成分の高いところは相対的に明 るくなる。汚濁帯の外形が、特に陵(edge)の部 分で、円くなっているのが観察できる。
- c 汚濁帯を有する斜長石斑晶の顕微鏡写真(TI14, Pl-17)。汚濁帯がその内側の累帯構造を切る (truncate)ように発達する。汚濁帯の外側が, 結晶の綾の部分で円くなっている。
- d 汚濁帯を有する斜長石斑晶の顕微鏡写真(TI 14, Pl-1)。汚濁帯は結晶の周辺を取り囲むように発達するが、一部(左上・右側)みられない。
- e 同上の斜長石斑晶の反射電子像(TI14, Pl 1)。
 汚濁帯の内側の部分は、組成変化は小さく、おおよそAn₄₁~An₄₆の範囲である。Caに富むへりが一部(下側)でみられない。
- f 同上の斜長石斑晶の右部分の拡大反射電子像(TI 14, Pl-1)。結晶の外形は自形の結晶面を有す るが、へりのCaに富む部分の内側は円くなっ ている。Caに富むへりで、外側に向かってCa 成分が減少するのが、反射電子の強度から読み とれる。

図版IIの説明

- a 汚濁帯を有しない斜長石斑晶の反射電子像(TI 14, Pl-5)。汚濁帯を有しない斜長石斑晶の中 では、Caに富むへりが顕著に発達している。
 幅はおよそ40~80µm。内側の部分のCaに富 む部分の組成はAn₈₂(分析値は表 2)。
- b 同上の斜長石斑晶の下部の拡大反射電子像(TI 14, Pl-5)。結晶の外形が自形を呈するが、Ca に富むへりと内部との境界は円くなっている。
- c 汚濁帯を有しない斜長石斑晶の反射電子像(MN 27, Pl-20)。Caに富むへりを有する。中心部のCaに富む部分の組成はAnsa。
- d 汚濁帯を有しない斜長石斑晶の反射電子像(MN 27, Pl-9)。薄い Ca に富むへりが発達。内部の Ca に富む帯の組成は An₅₆ (分析値は表2)。
- e 汚濁帯を有しない斜長石斑晶の反射電子像(MN 27, Pl-17)。累帯構造はそれ程著しくない。この結晶の組成幅はおよそ An₄₀~An₄₈。
- f 汚濁帯を有しない斜長石斑晶の反射電子像(TH 82101702, Pl-2)。Caに富む部分は途中切れ ており,包有物が集まっている。その部分の組 成は An₂(分析値は表2)。

スケールは全て0.1mm。

-10 -