第4章 津波予測シミュレーション

4-1 計算手法

津波のような波長の長い波の運動は、非線形長波の理論式(浅水理論式)によって表現され、 津波は源から陸上遡上に至る津波伝播の基本的な挙動を再現する。

設定した断層モデルを波源モデルとして与え、差分化した運動方程式及び連続の式を解 くことによって津波の計算を行った。港湾域では、さらに汀線が水位の昇降に伴って移動 することを考慮した。

4-1-1 基本方程式

鉛直方向の積分流量 M, N を以下の様に定義する。

$$M = \int_{-\zeta}^{h-\eta} u dz \tag{1}$$
$$N = \int_{-\zeta}^{h-\eta} v dz \tag{2}$$

但し、

u、v:x、y 方向の流速成分

M, N:海面から海底まで積分した質量輸送の成分

この積分流量 M, N を用い、断層による地盤変動を考慮し、非回転、長波近似、非粘性 を考慮すると基本方程式は次式のような方程式として表される。

$$\frac{\partial M}{\partial t} = -gD\frac{\partial\zeta}{\partial x} - \frac{gn^2}{D^{\frac{1}{3}}}\frac{M\sqrt{M^2 + N^2}}{D^2} - \frac{\partial}{\partial x}\left(\frac{M^2}{D}\right) - \frac{\partial}{\partial y}\left(\frac{MN}{D}\right)$$
(3)

$$\frac{\partial N}{\partial t} = -gD\frac{\partial \zeta}{\partial y} - \frac{gn^2}{D^{\frac{1}{3}}}\frac{N\sqrt{M^2 + N^2}}{D^2} - \frac{\partial}{\partial x}\left(\frac{MN}{D}\right) - \frac{\partial}{\partial y}\left(\frac{N^2}{D}\right)$$
(4)

$$\frac{\partial \zeta}{\partial t} = -\left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y}\right) + \frac{\partial \eta}{\partial t}$$
(5)

但し、

- ζ : 平均海面からの水位変化
- D :水深、D=h+ $\zeta \eta$
- h : 平均海面からの初期水深
- g : 重力加速度 (9.8m/sec²)
- n :マニングの粗度係数
- η :地盤変動量

である。なお、各変数の定義は図 4-1、4-2 のようになる。

図 4-2 流量と水位定義点配置

4-1-2 基本方程式の差分化

上で得られた式を計算機で解くために、海底から海面までの質量輸送を表す運動方程式(3)、 (4)及び連続の式(5)を差分化して時間積分を行う。 参考資料

本検討では、ソリトン分裂を考慮していないが、'津波が遠浅の場所が続く区間を遡上す る場合'や'津波高と水深の比が 0.83 程度よりも小さい場所'では、非線形分散長波理論 に基づく方程式を基本方程式とすることも可能である。

ソリトン分裂の影響を考慮した非線形分散長波理論式を式(2.2.4)~(2.2.6)に示す。

$$\frac{\partial \eta}{\partial t} + \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} = 0$$
 (2.2.4)
• 運動方程式

$$\frac{\partial M}{\partial t} + \frac{\partial}{\partial x} \left(\frac{M^2}{D} \right) + \frac{\partial}{\partial y} \left(\frac{MN}{D} \right) + gD \frac{\partial \eta}{\partial x} + \frac{gn^2}{D^{7/3}} M \sqrt{M^2 + N^2}$$
$$= \frac{D^2}{3} \frac{\partial}{\partial t} \left(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 N}{\partial x \partial y} \right) + v \left(\frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial y^2} \right) \qquad (2.2.5)$$

ここに、

η	:	水位(m)
М, N	:	x 及び y 方向の流量フラックス(又は線流量、m ³ /s/m)
h	:	初期状態の水深(m)
D	:	全水深(m)
g	:	重力加速度(=9.8m/s²)
п	:	マニングの粗度係数(m ^{-1/3} s)

「津波の河川遡上解析の手引き(案)平成19年5月/(財)国土技術研究センター」より抜粋

4-1-3 境界条件

 陸上遡上の先端条件について 海岸が低く、水が陸上に溢れる場合、浸水の先端での条件は次式で表す。

$$M = C_0 H \sqrt{gH}$$
$$N = C_0 H \sqrt{gH}$$

但し、

H : 地盤からの水位

である。

計算にあたっては、計算領域を限定する必要があるので、外海に境界が生ずる。外海の 境界は開境界とし、津波は境界で反射せずに、進行波として通過するものとする。

沖合:自由透過境界

海岸:第1領域~第4領域 完全反射境界 第5領域、第6領域 移動境界(遡上)

²⁾ 開境界条件

3) 波源条件

地震断層モデルを規定する断層パラメータから解析的に求められる地盤の弾性永久変位 量を波源条件として与え、その変位は一定速度で時間 τ かかって η に達するものと仮定す る。よって、水深 h は以下のように与えられる。

$$h = h_0 - \frac{t}{\tau} \eta \quad (t \le \tau)$$
$$h = h_0 - \eta \qquad (t > \tau)$$

但し、

h : 時刻 t における水深

- h0 : 地盤変動前の水深
- t :時間
- τ : 地盤変動時間
- η :地盤変動量

である。ここで、地盤の変位量は、Okada(1985)*による式を用いる。また、τを10秒とした。

* Okada, Y(1985). Surface Deformation due to Shear and Tensile Faults in a Half Space, Bull. Seism. Soc. Am. 75, pp.1135-1154

4-2 初期条件の設定

4-2-1 地盤条件

1) 粗度係数の設定

粗度(Manninigの粗度係数)データは国土数値情報の最新年次(平成9年)の1/10 細分区画 (約100mメッシュ)土地利用データを用い、各メッシュの土地利用分類毎に粗度を設定する。 土地利用分類別の粗度係数は「津波・高潮ハザードマップマニュアル」に準拠する。 土地利用分類別の粗度係数を表 4-1 に示す。

、 工地的用力规则相反体					
分類	粗度係数				
建物用地	0.06				
工業地等	0.04				
森林、林地	0.03				
田、畑	0.02				
海域、水域	0.025				

表 4-1 土地利用分類別粗度係数

注:「工業地等」については国土数値情報で対応する分類が無いため、詳細領域でのみ判別する。

図 4-3 粗度係数の設定

2) 地盤変位

地震の発生によって、地盤は隆起・沈降する。地盤の変位が陸域にも現れる場合、地盤 の隆起域では隆起しない場合に対し、浸水深が浅くなる。よってここでは「津波・高潮ハ ザードマップマニュアル」(平成16年4月、内閣府(防災担当)監修)に従い、浸水にとっ て危険側の判断を行うため、地盤の沈降のみを考慮した。隆起については考慮しない。 地盤変動量はマンシンハ・スマイリー(1971)の方法より算定した。

図 4-4 地盤変位量 1/2

4 - 7

(単位:m)

図 4-5 地盤変位量 2/2

4-2-2 初期水位の設定

1) 潮位条件

本検討における対象波は津波だけとし、風波・潮汐の運動は考慮していない。そこで、 静水位として潮位を設定する。

潮位は、「津波・高潮ハザードマップマニュアル」に基づき、H.W.L.(朔望平均満潮位) を基本とした。具体的には、検討対象範囲が広範囲に及ぶことから、検討対象区間のH.W.L. の代表値を用いる。

予測計算時潮位: H.W.L. (朔望平均満潮位)

(全域において HW.L.=T.P.+0.46m とした。)

対象海岸	朔望平均満潮位	出典	
石川海岸	T.P+0.46m	石川海岸管内図	
金沢港	T.P+0.46m	金沢港港湾計画図	
下新川海岸	T.P+0.46m	下新川海岸管内図	

2) 河川水位条件

河川域における初期水位は、平水流量として算定を行う。

河川遡上のモデル化を行う全ての水系河川(一級河川・二級河川)で流量観測が実施されていない。このため、平水流量の算定については、一般的な常時排水量の比流量 (m³/s/km²)を用いて、モデル化対象河川の平水流量を算定する。

一般的な常時排水量は、かんがい期(0.1~0.4m³/s/km²)、非かんがい期(0.05~0.1m³/s/km²)が一般値とされている。

区分	常時排水量
かんがい期	0. 1 \sim 0. 4m ³ /(s·km ²)
非かんがい期	0.05∼0.1 m³/(s⋅km²)

【土地改良事業計画設計基準[排水]p260】

モデル化した対象河川のうち、一級河川(手取川・梯川)での平水流量の比流量が 0.1 (m³/s/km²)であることから、一般的な常時排水量との整合も図られていることを踏まえ、 その他の対象河川の平水流量についても、この比流量を用いて平水流量を設定した。

表 4-2 手取川・梯川の比流量(平水流量)

河川	平水流量	流域面積	比流量	
	(m ³ /s)	(km²)	$(m^3/s/km^2)$	
手取川	54.73	809	0.1	
梯川	15.35	271	0.1	

-1- T A	にしる	流域面積	平水流量
小术石	河川石	A (km²)	Q(m³/s)
手取川	手取川	809	80.9
	梯川	271.2	27.12
+ */ 111	前川	49.7	4.97
作わり日	八丁川	19.5	1.95
	鍋谷川	25.9	4.97 1.95 2.59 20.9 14.5 8.33 25.63 2.21 6.2 2.51 38.9 8 1.74 7.49 6.41 2.84 16.9 5.7 11.6 2.01 5.56 4.72 8.04 12.78 16.89 4.10
大聖寺川	大聖寺川	209	20.9
东垣口	新掘川	145	14.5
利加川	動橋川	83.3	8.33
	犀川	256.3	25.63
昆山	安原川	22.1	Фуклаща Q (m³/s) 80.9 27.12 4.97 1.95 2.59 20.9 14.5 8.33 25.63 2.21 6.2 2.51 38.9 8 1.74 7.49 6.41 2.84 16.9 5.7 11.6 2.01 5.56 4.72 8.04 12.78 16.89 4.19 5.2
库川	伏見川	62	6.2
	高橋川	25.1	2.51
	大野川	389	38.9
	浅野川	80	8
大野川	金腐川	17.4	1.74
	森下川	74.9	7.49
	津幡川	64.1	6.41
	宇ノ気川	28.4	2.84
<u>ज</u> ज्ञा/ / 111	羽咋川	169	16.9
77 H F 111	子浦川	57	5.7
米町川	米町川	116	11.6
御祓川	御祓川	20.1	2.01
二宮川	二宮川	55.6	5.56
熊木川	熊木川	47.2	4.72
八ヶ川	八ヶ川	80.4	8.04
河原田川	河原田川	127.8	12.78
町野川	町野川	168.9	16.89
小又川	小又川	41.9	4.19
若山川	若山川	52	5.2

表 4-3 対象河川の平水流量

4-2-3 計算時間

津波の最大波を含む時間帯として地震発生後3時間を基本とした。時間解像度は、0.1秒 とした。津波の収束時間については、海域ポイントに応じて津波高が収束するまでの時間 を算定した。

4-3 再現性の確認

津波解析にあたっては、予測計算に次の不確定性や誤差が含まれることから、過小評価 とならないように考慮する必要がある。

・波源の不確定性
 ・数値計算上の誤差
 ・海底地形、海岸地形等のデータの誤差

これらを踏まえ、津波解析の精度を確保するため、石川県近傍における既往地震の再現を行い、痕跡値と解析値から解析モデルの検証と評価を行った。

4-3-1 評価手法

再現性の評価に当たっては、相田(1978)によって提案された津波痕跡高と解析値から 空間的な適合度を示す指標として幾何平均 K 値と幾何標準偏差 κ 値より定量的に評価を行 う。K と κ については、次式より算定する。

$$\log K = \frac{1}{n} \sum_{i=1}^{n} \log K_{i}$$

$$\log \kappa = \left[\frac{1}{n} \left\{ \sum_{i=1}^{n} (\log K_{i})^{2} - n(\log K)^{2} \right\} \right]^{1/2}$$

n: 地点数
K_i = *R_i/H_i*
R_i: i 番目の地点での痕跡高
H_i: i 番目の地点での計算値

なお、Κ と κ について再現性が確保される目安となる条件は次の通りである。

$$0.95 < K < 1.05$$

 $\kappa < 1.45$

4-3-2 評価対象

再現性確認のため、過去に石川県に津波が到達し、津波の観測記録や痕跡値の情報が残る北海道南西沖地震(1993)、日本海中部地震(1983)の2つの地震を評価対象とした。

断層モデル		経度 (゜)	緯度 (°)	深さ (km)	走行 (゜)	傾斜角 ([°])	滑り角 (°)	長さ (km)	幅 (km)	食い違い量 (cm)
日本海中部	NKC2	138.84	40.21	2	22	40	90	40	30	760
		139.02	40.54	3	355	25	80	60	30	305
北海道南西沖地震	HNO2	139.40	43.13	10	188	35	80	90	25	571
		139.25	42.34	5	175	60	105	26	25	400
		139.21	42.11	5	150	60	105	30.5	15	1200

表 4-4 断層パラメータ

ここで、断層モデルを北陸電力の実施した断層パラメータと同じとした。

1) 再現性確認のための痕跡元データ

再現性確認のための痕跡データとして、以下の文献から痕跡値を抽出した。また、初期 水位は津波到達時の潮位とするが、不明な場合は地震発生時の潮位とした。

【北海道南西沖地震】

·平成5年(1993年)北海道南西沖地震調查報告·災害時自然現象報告書-

・1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)

・1993年北海道南西沖地震による津波 その2

※潮位:TP+0.23 (地震発生時:七尾港推算潮位)

【日本海中部地震】

・昭和 58 年(1983)日本海中部地震調査報告
・昭和 58 年 5 月 26 日日本海中部地震に関する論文及び調査報告
・昭和 58 年日本海中部地震の津波痕跡記録把握調査報告書
・1983年日本海中部地震津波の実態と二・三の考察
※潮位:TP+0.03 (津波到達時:七尾港験潮記録)

4-3-3 海域解析の再現性の確認

1) 対象領域

"4-4 対象波源の絞込み"において、8 つの想定波源候補から石川県に影響のある波源の絞込みを行う。効率的な絞込みを行うため、海域のみの津波解析結果にて影響の大きなものを抽出した。そのため、海域を対象とした再現性の確認を行った。

2) 確認結果

2 つの対象波源についてそれぞれ再現性の確認を行ったが、幾何平均 K 値と幾何標準偏 差 κ 値ともに以下のとおり満足する値であり、再現性が確認された。

図 4-6 北海道南西沖震波高比較

【北海道南西沖地震】	16 箇所
------------	-------

痕跡ID	文献時代の市町村名	文献記載の地名	地点位置情報詳細	文献
212	輪島市	輪島(港)	輪島港験潮場	平成5年(1993年)北海道南西沖地震調査報告-災害時自然現象報告書-
216	金沢市	金沢(港)	金沢港験潮場	平成5年(1993年)北海道南西沖地震調査報告-災害時自然現象報告書-
1191	輪島市	輪島港	漁業協同組合前の岸壁	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
124	珠洲市	狼煙漁港	狼煙漁港(狼煙)岸壁上	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
111	穴水町	甲	女良川河口部	1993年北海道南西沖地震による津波 その2
1211	珠洲市	狼煙	石川県漁協ビル裏	1993年北海道南西沖地震による津波 その2
131	輪島市	輪島港	輪島港岸壁	1993年北海道南西沖地震による津波 その2
94	富来町	七海漁港	七海漁港岸壁	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
1212	輪島市	大沢漁港	大沢漁港岸壁	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
123	珠洲市	飯田港	飯田港岸壁	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
116	内浦町	松波	松波漁港岸壁	1993年北海道南西沖地震による津波 その2
1192	珠洲市	小泊	小泊漁港内砂浜	1993年北海道南西沖地震による津波 その2
125	珠洲市	長橋港	長橋漁港岸壁	1993年北海道南西沖地震による津波 その2
134	輪島市	大沢港	大沢漁港岸壁	1993年北海道南西沖地震による津波 その2
137	門前町	五十州	五十洲漁港岸壁	1993年北海道南西沖地震による津波 その2
142	富来町	赤崎港	赤崎港岸壁	1993年北海道南西沖地震による津波 その2

図 4-8 北海道南西沖地震痕跡位置図

【日本海中部地震】 20 箇所

痕跡ID	文献時代の市町村名	文献記載の地名	地点位置情報詳細	文献
87	七尾市	七尾	七尾市府中町員外	昭和58年(1983)日本海中部地震調査報告
91	金沢市	金沢	金沢市大野町4丁目地先	昭和58年(1983)日本海中部地震調査報告
615	珠洲市	真浦		昭和58年5月26日日本海中部地震に関する論文及び調査報告
634	門前町	赤碕漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
635	門前町	富来漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
644	羽咋市	柴垣漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
117	輪島市	輪島港		昭和58年日本海中部地震の津波痕跡記録把握調査報告書
391	宇出津町	宇出津港(1)	鳳珠郡能登町宇出津(宇出津港) 輪島土木宇出津出張所前岸壁	1983年日本海中部地震津波の実態と二・三の考察
394	珠洲市	狼煙漁港(1)	珠洲市狼煙新町(狼煙漁港(狼煙)) 狼煙地区、漁協内	1983年日本海中部地震津波の実態と二・三の考察
632	門前町	剣地漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
633	門前町	赤神漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
640	羽咋市	滝漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
646	美川町	美川漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
648	加賀市	橋立漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
649	加賀市	塩屋漁港		昭和58年5月26日日本海中部地震に関する論文及び調査報告
393	珠洲市	飯田港(1)	珠洲市飯田町(飯田港) 漁協前-2m泊地岸壁	1983年日本海中部地震津波の実態と二・三の考察
395	珠洲市	狼煙漁港(2)	珠洲市折戸町(狼煙漁港(折戸)) 舟戸地区、船揚場	1983年日本海中部地震津波の実態と二・三の考察
397	輪島市	輪島港(1)	輪島市河井町(輪島港) 作業基地岸壁	1983年日本海中部地震津波の実態と二・三の考察
399	輪島市	輪島港(3)	輪島市河井町(輪島港) 工事事務所背後駐車場	1983年日本海中部地震津波の実態と二・三の考察
400	輪島市	輪島港(4)	輪島市海士町(輪島港) 漁港、漁協前	1983年日本海中部地震津波の実態と二・三の考察

図 4-9 日本海中部地震痕跡位置図

4-4 対象波源の絞込み

"2-4 想定波源候補の設定"で想定した波源のうち、石川県に影響の大きな波源の絞込 みを行い、津波シミュレーションを実施する。

波源の絞込みに当たっては、海域のみの解析を実施し、海域 75 ポイントにおける波源毎 の波高を比較し、卓越するエリアの絞込みを行った。

4-4-1 海底ポイントの設定

海域のポイントについては、主要な港湾や漁港などを中心に水深 15m 付近の地点を選定 した。平面的には、漁港、港湾等の港口など中心となる位置とし、また、入り江などの入 り組んだ場所では波の反射影響が少ない地点を地形的に判断し、設定した。

●^{粮食品}

図 4-10 海域ポイント位置図

4-4-2 卓越波源の設定

設定した海域の 75 ポイントについて、各波源の津波高を算定し、卓越する地区を設定した。

1) 波源別海域解析結果

"2-4-3 波源設定方法について"にて設定した、8 つの想定波源候補について、海域解 析を行った。

エリア1:日本海東縁部

断層名:1.東縁部

- エリア2:能登半島東方沖
 - 断層名: 2-1.H7 波源

断層名: 2-2. 佐渡島南西1

断層名: 2-3. 佐渡島南西2

- エリア3:能登半島北方沖
 - 断層名: 3-1. 北方沖1
 - 断層名: 3-2. 北方沖2
- エリア4:石川県西方沖

断層名: 4-1. 能登北陸断層系南縁

断層名: 4-2. 隠岐断層系南縁

「日本周辺海域中新世最末期以降の構造発達史の付図『日本周辺海域の第四紀地質構造図』」に加筆

(1) 1. 東縁部

●能登外浦の剣地漁港から長橋漁港の区間で2~4m程度の水位上昇量となっている。

●能登内浦の小木以南では、1m 未満となっている。

想定マグニチュード	断層長L	すべり量 D	傾斜角 <i>θ</i>	すべり角λ
Mw=7.99	167km	12.01m	60°	90°

図 4-12 水位上昇量グラフ(1. 東縁部)

(2) 2-2. 佐渡島南西沖1

●能登外浦の富来漁港から能登内浦の小木にかけて 2m 以上の水位上昇量となっている。

●上大沢において、最大値 4.6m となっている。

●能登内浦の小木以南では、1m程度となっている。

想定マグニチュード	断層長L	すべり量D	傾斜角 <i>θ</i>	すべり角λ	
Mw=7.73	106km	7.71m	60°	90°	

図 4-14 水位上昇量グラフ (2-2. 佐渡島南西沖 1)

図 4-15 水位上昇量図(2-2. 佐渡島南西沖1)

(3) 2-3. 佐渡島南西沖2

●能登内浦の狼煙漁港から古君漁港の区間で卓越している。

図 4-16 水位上昇量グラフ (2-3. 佐渡島南西沖 2)

図 4-17 水位上昇量図 (2-3. 佐渡島南西沖 2)

(4) 3-1. 北方沖1

●北方沖1は、能登外浦の吉浦から寺家漁港の区間で卓越している。

●能登内浦の小木以南では、1m未満となっている。

想定マグニチュード	定マグニチュード 断層長L		傾斜角 <i>θ</i>	すべり角λ	
Mw=7.66	95km	6.76m	60°	90°	

図 4-18 水位上昇量グラフ (3-1. 北方沖 1)

図 4-19 水位上昇量図 (3-1. 北方沖 1)

(5) 3-2. 北方沖 2

●全域を通して、1m程度である。上大沢で最大値1.5mとなっている。

図 4-20 水位上昇量グラフ (3-2. 北方沖 2)

図 4-21 水位上昇量図 (3-2. 北方沖 2)

(6) 4-1. 能登北陸断層系南縁

●加越沿岸の塩屋・橋立で約4mの水位上昇量となっている。

●能登外浦の福浦漁港から西海にかけては 2m 程度となるが、その他は約 1m 未満となって いる。

想定マグニチュード	断層長L	すべり量D	傾斜角 <i>θ</i>	すべり角λ	
Mw=7.44	65km	4.62m	60°	90°	

図 4-22 水位上昇量グラフ (4-1. 能登北陸断層系南縁)

図 4-23 水位上昇量図(4-1. 能登北陸断層系南縁)

(7) 4-2. 隠岐断層系南縁

●加越沿岸の塩屋において最大値 2.8m となっているが、その他は約1m未満となっている。

想定マグニチュード	断層長L	すべり量 D	傾斜角	すべり角λ	
Mw=7.63	90km	6. 43m	60°	90°	

図 4-24 水位上昇量グラフ(4-2. 隠岐断層系南縁)

図 4-25 水位上昇量図 (4-2. 隠岐断層系南縁)

【補足】 2-1.H7 波源

●能登外浦の西海から能登内浦の小木までは、約3.0以上の水位上昇量となっている。 ●特に、吉浦や上大沢、能登内浦の能登飯田では5.0mを越える水位上昇量となっている。

想定マグニチュード 断層長 L		すべり量D	傾斜角 <i>θ</i>	すべり角λ	
Mw=7.63	90km	6. 43m	60°	90°	

図 4-26 水位上昇量図(2.H7 波源)

【平成7年度の能登半島東方沖について】

平成 7 年度は、海域のみ津波解析を行い、陸域の遡上については海域の津波高に増幅率 をかけあわせ津波浸水標高を算定し、レベルバックで設定している。増幅率については、 津波のかけあがりが著しくない地域については"1.58"とし、湾や谷地形などの津波のか けあがりの著しい地域については"2.69"としている。増幅率の設定エリアについては不 明であるため、上記グラフでは、平成 7 年度の水位上昇量(赤破線)を二つの増幅率で割り 戻し、海域解析の水位上昇量をハッチングで示した。

本検討の解析結果(赤実線)と重ね合わせて比較すると、一部突出するポイントはあるが 平成7年度の水位上昇量と同様の傾向を示していると考えられる。

2) 波源の絞込み

図 4-27 に波源別の水位上昇量を重ね合わせ、地域毎に卓越する波源を確認した。

図 4-27 卓越波源グラフ

加賀~金沢地区については、 <mark>4-1. 能登・北陸断層系南縁</mark> の波源が卓越する。
金沢~外浦地区については、 <mark>3-1. 北方沖 1</mark> が卓越する。
旧門前地区については、 <mark>1. 東縁部</mark> が卓越する。
外浦地区については、 <mark>3-1. 北方沖 1</mark> が卓越する。
内浦地区については、 <mark>2−3. 佐渡島南西 2</mark> が卓越する。

絞り込んだ波源が、"日本海東縁部""能登半島東方沖""能登半島北方沖""石川県西方 沖"のエリア毎に1波源となったことから、波源の絞込みにあわせて、波源名を以下のと おり修正した。

変更前	変更後
1.東縁部	1.日本海東縁部
2-3. 佐渡島南西 2	2.能登半島東方沖
3-1.北方沖1	3.能登半島北方沖
4-1.能登北陸断層系南縁	4.石川県西方沖

表 4-5 波源名称の変更

図 4-28 卓越波源図

「日本周辺海域中新世最末期以降の構造発達史の付図『日本周辺海域の第四紀地質構造図』」に加筆

4-5 陸域解析を含めた再現性の確認

"4-3-2 評価対象"と同様の対象波源で再現性の確認を行った。

断層モデル		経度 (°)	緯度 (°)	深さ (km)	走行 (°)	傾斜角 (°)	滑り角 ([°])	長さ (km)	幅 (km)	食い違い量 (cm)
口木海山如	NKC2	138.84	40.21	2	22	40	90	40	30	760
口本海中即	INKOZ	139.02	40.54	3	355	25	80	60	30	305
		139.40	43.13	10	188	35	80	90	25	571
北海道南西沖地震	HNO2	139.25	42.34	5	175	60	105	26	25	400
		139.21	42.11	5	150	60	105	30.5	15	1200

表 4-6 断層パラメータ

ここで、断層モデルを北陸電力の実施した断層パラメータと同じとした。

1) 対象領域

"4-3-3 海域解析の再現性の確認"では、海域解析の結果について再現性の確認を行った。本項では、海域から陸域までの一連の津波解析を行った場合の津波解析モデルの再現性確認を行った。

2) 再現性の確認

2 つの対象波源について、それぞれ再現性の確認を行ったが、幾何平均 K 値と幾何標準 偏差κ値ともに以下のとおり満足する値であり、再現性が確認された。

第5章からは、解析結果を示す。

	【北海道	道南西沖地震】	14 箇所	
	痕跡ID	文献時代の市町村名	地点位置情報詳細	文献
	212	輪島市	輪島港験潮場	平成5年(1993年)北海道南西沖地震調査報告-災害時自然現象報告書-
	216	金沢市	金沢港験潮場	平成5年(1993年)北海道南西沖地震調査報告-災害時自然現象報告書-
	1191	輪島市	漁業協同組合前の岸壁	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
	124	珠洲市	狼煙漁港(狼煙)岸壁上	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
ſ	111	穴水町	女良川河口部	1993年北海道南西沖地震による津波 その2
[1211	珠洲市	石川県漁協ビル裏	1993年北海道南西沖地震による津波 その2
	131	輪島市	輪島港岸壁	1993年北海道南西沖地震による津波 その2
[94	富来町	七海漁港岸壁	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
[1212	輪島市	大沢漁港岸壁	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
ſ	123	珠洲市	飯田港岸壁	1993年北海道南西沖地震津波の特性と被害@@(『港湾技研資料』、No.775)
	116	内浦町	松波漁港岸壁	1993年北海道南西沖地震による津波 その2
ſ	134	輪島市	大沢漁港岸壁	1993年北海道南西沖地震による津波 その2
Ī	137	門前町	五十洲漁港岸壁	1993年北海道南西沖地震による津波 その2
ſ	142	富来町	赤崎港岸壁	1993年北海道南西沖地震による津波 その2

図 4-32 北海道南西沖地震痕跡位置図

【日才	[本中部地震]	17 箇所	
痕跡ID	文献時代の市町村名	地点位置情報詳細	文献
87	七尾市	七尾市府中町員外	昭和58年(1983)日本海中部地震調査報告
91	金沢市	金沢市大野町4丁目地先	昭和58年(1983)日本海中部地震調査報告
615	珠洲市		昭和58年5月26日日本海中部地震に関する論文及び調査報告
634	門前町		昭和58年5月26日日本海中部地震に関する論文及び調査報告
635	門前町		昭和58年5月26日日本海中部地震に関する論文及び調査報告
644	羽咋市		昭和58年5月26日日本海中部地震に関する論文及び調査報告
117	輪島市		昭和58年日本海中部地震の津波痕跡記録把握調査報告書
391	宇出津町	鳳珠郡能登町宇出津(宇出津港) 輪島土木宇出津出張所前	1983年日本海中部地震津波の実態と二・三の考察
633	門前町		昭和58年5月26日日本海中部地震に関する論文及び調査報告
640	羽咋市		昭和58年5月26日日本海中部地震に関する論文及び調査報告
646	美川町		昭和58年5月26日日本海中部地震に関する論文及び調査報告
648	加賀市		昭和58年5月26日日本海中部地震に関する論文及び調査報告
649	加賀市		昭和58年5月26日日本海中部地震に関する論文及び調査報告
393	珠洲市	珠洲市飯田町(飯田港) 漁協前−2m泊地岸壁	1983年日本海中部地震津波の実態と二・三の考察
395	珠洲市	珠洲市折戸町(狼煙漁港(折戸)) 舟戸地区、船揚場	1983年日本海中部地震津波の実態と二・三の考察
397	輪島市	輪島市河井町(輪島港) 作業基地岸壁	1983年日本海中部地震津波の実態と二・三の考察
399	輪島市	輪島市河井町(輪島港) 工事事務所背後駐車場	1983年日本海中部地震津波の実態と二・三の考察

図 4-33 日本海中部地震痕跡位置図

3) 波源の卓越地区の確認

"4-3-3 海域解析の再現性の確認"にて、海域解析における卓越波源の確認を行ったように、陸域の遡上解析を行った場合の波高が卓越する地区を確認した。なお、陸域上解析は構造物のあり、なしの 2 ケースを行っていることから、それぞれについて検討を行ったが、海域解析と同様の結果を得た。

加賀~金沢地区については、4.石川県西方沖が卓越する。 金沢~外浦地区については、3.能登半島北方沖が卓越する。 旧門前地区については、1.日本海東縁部が卓越する。 外浦地区については、3.能登半島北方沖が卓越する。 内浦地区については、2.能登半島東方沖が卓越する。

図 4-34 卓越波源地区グラフ(構造物あり)

